您的浏览器版本过低,为保证更佳的浏览体验,请点击更新高版本浏览器

以后再说X
开云真人
NEWS

新闻资讯

新闻资讯

开云真人采用六步换相法实现直流无刷电机的正反转驱动

作者:小编 发布时间:2023-11-02 04:06:43点击:

  X-NUCLEO-IHM07M1驱动板有一颗MOS管集成芯片L6230,该驱动芯片集成有3个桥臂6颗MOS管可驱动PMSM及BLCD电机,内部结构如下图所示。

开云真人采用六步换相法实现直流无刷电机的正反转驱动(图1)

开云真人采用六步换相法实现直流无刷电机的正反转驱动(图2)

开云真人采用六步换相法实现直流无刷电机的正反转驱动

  X-NUCLEO-IHM07M1驱动板的驱动电路如下图所示,采用桥臂1、桥臂2以及桥臂3构成的三相逆变电路驱动无刷直流电机,EN1、EN2以及EN3为为每相桥臂的使能控制输入,IN1、IN2以及IN3为每相桥臂的开关控制输入,OUT1、OUT2以及OUT3为输出,外接无刷直流电机。

开云真人采用六步换相法实现直流无刷电机的正反转驱动(图4)

  采用六步换相法驱动无刷直流电机转动,并实现直流无刷电机的换向控制。按下一次按键电机正转;再按一次按键电机停止;再按一次按键电机反转;再按一次按键电机停止,以此循环。

开云真人采用六步换相法实现直流无刷电机的正反转驱动(图5)

  直流无刷电机:WR36BL61,额定功率10W,额定电压24V,额定电流0.5A,转速2000RMP,极对数2。

开云真人采用六步换相法实现直流无刷电机的正反转驱动(图6)

  本次软件设计框架为:STM32CubeMX配置底层代码;底层与应用层的接口代码在Keil环境下开发;应用层代码在Matlab/Simulink中开发。

  为了更直观简单地实现直流无刷电机的六步换相控制,将所用引脚均设置为普通I/O口模式。

  2、PA8、PA9、PA10、PC10、PC11、PC12设置为推挽输出、无上下拉电阻、高速,初始化状态设为0; PA15、PB3、PB10设置为输入,无上下拉电阻; PB13、PB2设置为推挽输出,下拉电阻、高速,初始化状态为0; PC13设置为输入,无上下拉电阻。

  电机运行模式:设计有电机停止、电机正转、电机反转三种模式,LED1用于指示程序运行“500ms亮,500ms灭”。

  电机正转:内部逻辑用Stateflow写,根据霍尔状态控制开关管进行六步换相控制

开云真人采用六步换相法实现直流无刷电机的正反转驱动(图7)

  电机反转:内部逻辑用Stateflow写,根据霍尔状态控制开关管进行六步换相控制

  将Matlab/Simulink模型生成的代码文件夹复制到底层生成的工程下。

开云真人采用六步换相法实现直流无刷电机的正反转驱动(图8)

开云真人采用六步换相法实现直流无刷电机的正反转驱动(图9)

  注:此时编译工程会报错,缺少“solver_zc.h”头文件,该头文件在Matlab/Simulink/Include路径下面,可以直接把该文件粘贴复制到Matlab/Simulink生成的代码文件BLDC_SixStep目录中,也可以将该文件的路径进行添加。

开云真人采用六步换相法实现直流无刷电机的正反转驱动(图10)

开云真人采用六步换相法实现直流无刷电机的正反转驱动(图11)

  本章节基于STM32F302R8控制板和X-NUCLEO-IHM07M1驱动板,采用六步换相法实现了直流无刷电机的正反转驱动,并且软件编程的工具链采用STM32CubeMX+Matlab/Simulink+Keil,大部分代码采用自动生成的方式简化了编程的难度。关键字:直流无刷电机编辑:什么鱼 引用地址:采用六步换相法实现直流无刷电机的正反转驱动

  上一篇:永磁同步电机流频比I/F控制原理及Matlab/Simulink仿真分析

  节能减排的议题在国际舞台中不断地受到重视,其目的就是为了防止环境污染继续恶化、改善气候剧烈变动,以及在地球有限资源情况下订定条款并相互约束。在普通消费者看来,节能减排无非就是随手关闭电源,或搭乘公共交通系统,以便减少资源的浪费及实现资源回收再利用等目的。但是除了这些随手可以实现的动作之外,另一个根本问题就是如何提高能源使用效率。美国 EPRI就曾指出,全球电机所耗费的金额一年高达950亿美金,占了所有电力51%;其次是照明19%,冷却/供暖16%, IT 14%。 无论是工业、家庭还是商业用电,电机所消耗的能源都占有很高的比例。以中国台湾2007年的工业用电为1172亿度为例,电机用电约820亿度,占了总开云真人体用电的70%。如果改善电

  引言 近几年来,随着电力电子技术的飞速发展,永磁无刷直流电机的本体及其相关控制技术得到迅猛的发展。永磁无刷直流电机有着噪音低、效率高、控制简单、功率密度高等诸多优点,因此在交通、航空、航天、军工、伺服控制以及家电领域得到广泛应用。 对方波型无刷直流电机的控制方式主要有H_PWM_L_0N调制方式、H_ON_L_PWM调制方式、H-PWMLPWM调制方式等。 本文介绍如何用80C196MH来实现H_WM_L_0N调制方式,并在上管进行PWM调制时,对应下管进行互补PWM调制,改进了电机减速停机性能,从而更好地对电机转速进行控制。Intel80C196MH是专门为电机高速控制所设计,它是由CHMOS电路

  1 MC33035功能介绍 MC33035是安森美公司推出的第二代无刷直流电机控制专用集成电路,主要组成部分包括转子位置传感器译码电路、带温度补偿的内部基准电源、频率可设定的锯齿波振荡器、误差放大器、脉宽调制(PWM)比较器、输出驱动电路、欠压封锁保护、芯片过热保护等故障输出电路和限流电路等。MC33035的典型控制功能包括PWM速度控制、使能控制(启动或停止)、正反转控制、相位选择和制动控制等。 芯片功能引脚定义如表1所列。 SA、SB、SC为霍尔信号输入端,内部上拉20 kΩ电阻,外接霍尔传感器即可。Fwd/Rew、Brake、Output Enable和60°/120°Select分别为方向、制动、使能和霍尔相

  控制系统中的应用 /

  前言 本文在现有电动汽车动力控制方法基础上,设计并实现了一种电助力转向与双后轮独立驱动相结合的模型电动车运动控制系统。该系统将电助力转向与双后轮轮毂电机驱动结合,省略了传统的离合器、变速器、主减速器及差速器等部件,大大简化了整车结构大大提高了电动汽车电气化程度和可控制程度,充分发挥了电动汽车高度电机一体化的优势。文中具体给出了系统各关键子系统的设计和控制方法,并通过台架实验证明了设计的有效性。 1模型电动汽车系统总体构成 设计针对电动车( EV) 理想车况低速行驶,实现了一种双后轮独立驱动运动模型。系统结构如图1所示。 模型车前轮控制采用电助力转向( EPS)系统,动力由两个后轮电机共同提供。

  引言 提到直流无刷电机,那不得不提的就是有刷电机了。有刷电机有一个比较令人讨厌的缺点:那就是“吵”。因为电刷和换向环需要时刻不停地摩擦,才能给电枢供电。所以,如果你想要一个“静音风扇”的话,肯定不能选使用了有刷电机的产品。无刷直流电机是在有刷直流电动机的基础上发展来的,具有无极调速、调速范围广、过载能力强、线性开云真人度好、寿命长、体积小、重量轻、出力大等优点,解决了有刷电机存在的一系列问题,广泛应用于工业设备、仪器仪表、家用电器、机器人、医疗设备等各个领域。 主流的无刷直流电机的控制方式目前主要有三种:FOC(又称为矢量变频、磁场矢量定向控制)、方波控制(也称为梯形波控制、120°控制、6步换向控制)和正弦波控制。正弦波控制方式

  IC解决方案 /

  四轴飞行器是近来在专业与非专业领域都非常火爆的技术产品。下面这篇文章针对四轴飞行器无位置传感器无刷直流电机的驱动控制,设计开发了三相六臂全桥驱动电路及控制程序。设计采用ATMEGA16单片机作为控制核心,利用反电势过零点检测轮流导通驱动电路的6个MOSFET实现换向;直流无刷电机控制程序完成MOSFET上电自检、电机启动软件控制,PWM电机转速控制以及电路保护功能。该设计电路结构简单,成本低、电机运行稳定可靠,实现了电机连续运转。 近年来,四轴飞行器的研究和应用范围逐步扩大,它采用四个无刷直流电机作为其动力来源。无刷直流电机为外转子结构,直接驱动螺旋桨高速旋转。 无刷主流电机的驱动控制方式主要分为有位置传感器和无位置传感器的

  作为电机行业的“新人”, 无刷电机是实至名归的后起之秀,以狂浪之势涌入医疗,工业控制,消费电子和汽车电子等高精度控制行业,“无刷“是不是未来电机行业的发展趋势?本文以案例的形式扒一扒无刷电机那些事! 近年来,无刷电机在医疗,工业控制,消费电子和汽车电子等高精度控制行业广泛应用,无刷电机性能的好坏很大程度上取决于电机驱动器,研发阶段,工程师如何借助示波器快速、便捷、真实的对驱动器信号进行分析?本文主要介绍ZDS4054Plus数椐挖掘型示波器对电机驱动器的典型测试及案例分析。 一、直流无刷电机介绍 随着电力电子的发展和新型永磁材料的出现,无刷直流电机得到了迅速发展,无刷直流电机通过电子器件实现了电机的换相,取代了传统的机械电刷和换相

  行业的典型应用 /

  无刷电机启动不起来的原因 无刷电机启动不起来的原因可能有很多,以下是一些常见的问题和解决方法: 电源问题:检查电源是否正常,电压是否足够,电源线是否连接良好。 控制器问题:无刷电机需要配合专门的控制器使用,检查控制器是否正确配置和连接,是否故障。 传感器问题:无刷电机需要通过传感器来检测转子的位置和速度,检查传感器是否正常。 机械问题:检查电机转子是否卡住或者电机机械部分是否存在故障。 程序问题:无刷电机需要通过控制器进行调速,检查程序是否正确。 如果以上问题均排除,建议检查电机线路连接是否正确,是否短路或开路,或者将电机连接到其他控制器或电源上测试,以确认是不是控制器或电源的问题。如果您仍然无法解

  有奖直播:安世半导体先进 SiC MOSFET 助力提升 EV-Charger 和 OBC 应用能效

  有奖直播报名| TI 专为汽车应用设计的低功耗、低成本新型 MSPM0 MCU

  MPS 隔离式稳压 DC/DC 模块——MIE系列首发,邀你一探究竟!

  11 月 1 日消息,在今日的 2023 vivo 开发者大会上,vivo 自研蓝河操作系统 BlueOS 发布,将在 vivo WATCH 3 手表首发搭载。 ...

  11月1日,在2023云栖大会上,阿里巴巴平头哥发布旗下首颗SSD主控芯片镇岳510,该芯片为云计算场景深度定制,实现4μs超低时延,比业界主流降低30%以上,误码率低至10-18,比业内标杆领先一个...

  中国北京(2023年11月1日) 业界领先的半导体器件供应商兆易创新GigaDevice宣布,搭载了兆易创新GD25F128F车规级SPI NOR Flash的 ...

  利用搭载全域硬2D NoC的FPGA器件去完美实现智能化所需的高带宽低延迟计算

  随着大模型、高性能计算、量化交易和自动驾驶等大数据量和低延迟计算场景不断涌现,加速数据处理的需求日益增长,对计算器件和硬件平台提出 ...

  美光低功耗内存解决方案助力高通第二代骁龙 XR2 平台 提升混合现实(MR)与虚拟现实(VR)体验

  美光 LPDDR5X 和 UFS 3 1 解决方案为元宇宙应用带来高速率和低功耗特性2023 年 10 月 31 日,中国上海Micron Technology, ...

  贸泽电子开售STMicroelectronics配备FPU的 STM32H5 Arm Cortex-M33 32位MCU

  瑞萨全新超高性能产品 业界首款基于Arm® Cortex®-M85处理器的MCU

开云真人采用六步换相法实现直流无刷电机的正反转驱动(图12)

  站点相关:嵌入式处理器嵌入式操作系统开发相关FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科

在线客服
联系方式

热线电话

18001916163

上班时间

周一到周五

公司电话

021-69006163

二维码
线